Windows to the Brain: Introduction to Neuroanatomy

Overview
- Planes of Section
- Radiographic Perspective
- Major Divisions

Cortical
- Lobes, Gyri & Sulci
- General Functions
- Brodmann’s Areas
- Basal Forebrain

Subcortical
- Structures
- Symptoms

Cerebellum
- Structures
- Symptoms

Katherine Taber, PhD, FANPA
MIRECC Assistant Director - Education
Research Health Scientist
W.G. “Bill” Hefner VAMC, Salisbury NC
Research Professor, Div Biomedical Sciences
Edward Via College of Osteopathic Medicine

Robin Hurley, MD, FANPA
MIRECC Associate Director - Education
ACOS/Research and Academic Affairs Service Line
W.G. “Bill” Hefner VAMC, Salisbury NC
Professor, Psychiatry and Radiology
Wake Forest School of Medicine

revised September 2019
Use of text, images and other content are subject to the following terms and conditions:

Fair Use Is Permitted

Fair use of copyrighted material includes the use for non-commercial educational purposes, such as teaching, scholarship, research, criticism, commentary, news reporting, and other content. Unless otherwise noted, users who wish to download or print text and image files from this Web site for such uses may do so without the VISN 6 MIRECC’s express permission, provided that they comply with the following conditions:

The content may only be used for personal, educational or non-commercial purposes;

Users must always specifically cite the author(s) and source of the content every time the material is used, as they would for material from any printed work;

None of the content may be altered or modified.

Warranty

By downloading, printing, or otherwise using text and image files from this website, users agree and warrant that they will limit their use of such files to fair use.
In medical practice the most common way to view the brain is the two dimensional sections provided by magnetic resonance imaging (MRI) and computed tomography (CT). While it is possible to image the brain in virtually any orientation, the axial plane of section is used most often as it allows the entire brain to be captured in the fewest number of sections. Anatomists prefer the coronal plane of section because many structures, particularly small ones, are more easily recognized. Note that both the axial and sagittal planes of section go from the front (anterior) to the back (posterior) of the brain. Axial goes from one side to the other (medial to lateral). Sagittal goes from top (superior) to bottom (inferior).
Clinical images are displayed in the radiographic perspective. Most teaching and reference materials use the anatomic perspective.

All radiographic images are displayed using a single set of conventions:

- patient is lying on his/her back (supine)
- viewer is at patient’s feet looking toward the patient’s head
- patient’s right
- patient’s left

There are 2 key differences between the radiographic perspective and the anatomic perspective that are important to remember when viewing clinical brain images.

[1] The left side of an axial or coronal brain image is the right side of the brain:

[2] On axial images brainstem and spinal cord will be inverted compared to how they are displayed in most teaching and reference materials:
The neural tube (illustrated in schematic form) expands locally to form the 3 primary divisions or vesicles: forebrain (prosencephalon, yellow), midbrain (mesencephalon, green), and hindbrain (rhombencephalon, purple). These in turn form the 5 secondary divisions. The forebrain vesicle subdivides into telencephalon (yellow) and diencephalon (light green). The hindbrain vesicle subdivides into the metencephalon (blue) and myelencephalon (pink). *

The highly in-folded cerebral cortex is the largest single division of the human brain. Anatomists commonly divide it into four sections or lobes - the frontal, temporal, parietal and occipital lobes. Some consider the limbic areas of cortex to comprise a fifth lobe, whereas others include these areas in the frontal and temporal lobes and diencephalon. Note that the medial and posterior inferior surfaces of the temporal lobe can only be seen on the drawings of the medial and inferior surfaces of the brain. This is because the brainstem and cerebellum have been omitted on the drawings.
The location and names of the structures that make up the outer (surface of brain) and inner (deep structures) limbic lobes are illustrated on schematic diagrams of the medial surface of the right cerebral hemisphere. Structures are color-coded to match the summary of subcortical structures and the sectional atlases.
An outfolding of the cerebral cortex is called a gyrus (plural is gyri), an infolding is called a sulcus (plural is sulci). Some very large sulci are called fissures. Although major gyri and sulci are present in all normal brains, they can vary considerably in both extent and location. Many areas have considerable normal variation in the folding patterns.
Right Hemisphere - In most individuals, the processing of nonverbal information, such as music or visuospatial information, occurs primarily in the right hemisphere.

Left Hemisphere - In most individuals, the processing of verbal information, including language, occurs primarily in the left hemisphere.
Brodmann’s Areas

In the early part of the 20th century, Brodman defined cortical areas based upon features such as the size, shape and distribution of neurons (cytoarchitecture). An approximation of these areas are provided in the illustrations below. Versions of this system are still widely used. While useful, it is important to always keep in mind that Brodman’s work was based upon analysis of a single brain. Brains vary greatly in size, shape, and infolding patterns. Research has shown that there is a wide range in the extent of a specific Brodman area when compared across individuals. Thus, such maps should be used only as extremely general guides.
The basal forebrain area contains many cholinergic neurons in the basal nucleus of Meynert, nucleus of the diagonal band and septal nuclei. The general location of this important region and its projections to cortex are approximated on sagittal and coronal magnetic resonance images. The basal forebrain cholinergic neurons project to cortex via both medial and lateral routes. Fibers travel to hippocampus via the fornix, olfactory cortex via the olfactory tract and amygdala via stria terminalis and the ventral amygdalofugal pathway.
The major subcortical structures are color-coded to match the sectional atlases. The next page contains a brief guide to neuropsychiatric symptoms associated with injury to each structure.*

A brief guide to neuropsychiatric symptoms associated with injury to each of the major subcortical structures is color-coded to match the illustration on the previous page.

Thalamus - (left) deficits in language, verbal intellect, and verbal memory (right) deficits in visuospatial and nonverbal intellect and visual memory, (bilateral) severe memory impairment (“thalamic amnesia”) as well as dementia; damage to the anterior and medial thalamus can also result in disturbances of autonomic functions, mood, and the sleep/waking cycle.

Caudate - apathy, disinhibition, disorganization, executive dysfunction, depression, memory loss, atypical aphasia, psychosis, personality changes, and predisposition for delirium.

Putamen - most commonly language and behavioral deficits (i.e., atypical aphasia, obsessive - compulsive traits, executive dysfunction); hemineglect, depression, and memory loss have also been reported.

Globus pallidus - anxiety, depression, apathy, psychosis, and central pain; less often reported symptoms include amnesia and cognitive deficits.

Amygdala - passivity or aggression, hypersexuality, hyperorality, hyperphagia, decreased fear, anxiety or startle, and decreased link between emotion and memory.

Hippocampal formation - primarily memory deficits including anterograde and retrograde amnesia, inability to form new memories, and temporally graded amnesia.

Fornix - memory deficits include impaired recent memory, syndrome of transitory amnesia, and long-term anterograde amnesia.

Hypothalamus - aggression, violence, anorexia, depression, impaired short-term memory, dementia, gelastic seizures, and altered sleep/wake cycle.

Mammillary body - memory deficits and psychosis.

Substantia nigra - primarily behavioral and emotional deficits (i.e., apraxia, ataxia, aggression, and depression), with less frequent reports of memory and cognitive deficits.
Lobes

- anterior
- flocculonodular
- posterior
- floculonodular

Arterial Territories

- basilar
- anterior inferior cerebellar
- posterior inferior cerebellar
- vertebral
- superior cerebellar

cut surface of middle cerebellar peduncle (brachium pontis)

Major Functions

<table>
<thead>
<tr>
<th>Old View</th>
<th>New View</th>
</tr>
</thead>
<tbody>
<tr>
<td>anterior lobe syndrome - ataxia & broad-based staggering gait</td>
<td>motor control - movement execution</td>
</tr>
<tr>
<td>gross head & body movement, muscle tone</td>
<td>cerebellar motor syndrome - ataxia, dysmetria, dysarthria</td>
</tr>
<tr>
<td>voluntary muscle coordination</td>
<td>nonmotor control (executive, visuospatial, language, affective)</td>
</tr>
<tr>
<td>neocerebellum syndrome - changes in muscle tone, reflexes & coordination of voluntary movements</td>
<td>cerebellar cognitive affective syndrome - language, visuospatial & executive deficits, affective dysregulation (dysmetria of thought)</td>
</tr>
<tr>
<td></td>
<td>motor control - movement planning</td>
</tr>
</tbody>
</table>

truncal equilibrium

balance & spatial orientation

vestibulocerebellum - vertigo, nystagmus

motor control - movement execution

cerebellar motor syndrome - ataxia, dysmetria, dysarthria

nonmotor control (executive, visuospatial, language, affective)

cerebellar cognitive affective syndrome - language, visuospatial & executive deficits, affective dysregulation (dysmetria of thought)